Squares in Lehmer sequences and the Diophantine equation Ax4-By2=2
نویسندگان
چکیده
منابع مشابه
Solving Diophantine Equations via Lucas-Lehmer Theory
In this work we look at an approach to solving Pell’s equation using continued fractions and fundamental units in real quadratic orders. We demonstrate that there is an underlying general approach using Lucas-Lehmer methods for solving Pell and other quadratic Diophantine equations that is often overlooked in the literature. Mathematics Subject Classification: Primary: 11D09; 11A55; Secondary: ...
متن کاملOn the Diophantine Equation
= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...
متن کاملOn the Diophantine Equation
If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...
متن کاملOn the Diophantine Equation
In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...
متن کاملOn the Diophantine Equation
In this remark, we use some properties of simple continued fractions of quadratic irrational numbers to prove that the equation x3 − 1 x− 1 = y − 1 y − 1 , x, y, n ∈ N, x > 1, y > 1, n > 3, 2 ∤ n has only the solutions (x, y, n) = (5, 2, 5) and (90, 2, 13). For any positive integer N with N > 2, let s(N) denote the number of solutions (x,m) of the equation (1) N = x − 1 x− 1 , x,m ∈ N, x ≥ 2, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2009
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa139-3-6